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RESTRICTIONS OF PSEUDOCHARACTERS ON
SIMPLE HERMITIAN SYMMETRIC CLASSICAL
LIE GROUPS TO SIMPLE SUBGROUPS

A. 1. SHTERN

ABSTRACT. It is proved that the restrictions of the Guichardet—Wigner pseu-
docharacters on the simple Hermitian symmetric classical Lie groups to cer-
tain simple classical Hermitian symmetric Lie subgroups are nontrivial pseu-

docharacters.

§ 1. INTRODUCTION

For the definitions, notation, and generalities concerning pseudocharac-
ters, Guichardet—Wigner pseudocharacters, and quasicharacters, see [1-3].
In this paper, we prove that the restriction of the Guichardet—Wigner pseu-
docharacter on every simple Hermitian symmetric classical Lie group to a
certain simple Hermitian symmetric classical Lie subgroup is nontrivial (and
thus is a Guichardet—Wigner pseudocharacter on the subgroup).

§ 2. PRELIMINARIES

Recall (see, e.g., [4]) that, if G is a simple Lie group, then the center Z(¥)
of the maximal compact Lie subalgebra £ is nontrivial if and only if the space
of Lie homomorphisms Hom(¢,R) is nonzero. If these conditions hold (in
which case the space G/K is naturally equipped with a G-invariant complex
structure with respect to which this space is Hermitian symmetric), then, up
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to local isomorphism, the group G coincides with one of the following groups:

(1) SU(p,q),p,q € N; (2) SO¢(2,q), the identity component of SO(2,q),
where ¢ € N,q # 2 (recall that SO¢(2,2) is not a simple Lie group); (3)
Sp(n,R),n € N; (4) SO*(2n),n > 1 (recall that SO*(2) is not a simple Lie
group); (5) the real form of the complex simple Lie group of type Eg with
dimt = 46; (6) the real form of the complex simple Lie group of type FEx
with dim ¢ = 79.

The relationship between the Guichardet—Wigner colycles and the Guichardet—

Wigner pseudocharacters is explicitly described in [5-7].

8 3. MAIN RESULTS

In what follows, we consider Guichardet—Wigner the restrictions of the
pseudocharacters on the following simple Hermitian symmetric classical groups
G to the following simple Hermitian symmetric classical subgroups H, respec-
tively:

1) G = SU(p,q) and either p > 1 and H = SU(p — 1,q) or ¢ > 1 and
H =8SU(p,q — 1), where G is realized as the set of complex matrices

(1) g= <911 912)

g21 G922

and every g;; is a submatrix of order d; x d; for i, = 1,2, d; = p and ds = g,
such that gJg* = J and det g = 1 (¢* is the matrix Hermitian conjugate to

9), and
I, 0
JZ((? —Iq>;

the subgroup H is formed by the matrices (1) with either g; = ((1) g?l )’

g2 = (7, ), and ga1 = (0 63 ) with

911 Y12
<9§1 922> €SUp—19).

In this description, the Lie subgroup K corresponding to the maximal
compact Lie subalgebra £ of the Lie algebra g of G is realized as the set
of the above matrices with g € G such that g12 = g1 = 0, g11 € U(p),
922 € U(q), and det g11 det goo = 1 (as usual, U(n) stands for the group of
unitary matrices of order n). One can identify the space p in the Cartan
decomposition with the set of Hermitian matrices of the form

(r o)
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where R is an arbitrary (px¢)-matrix. For a function v defining a Guichardet—
Wigner cocycle by the formula

flg1,92) = 2m) "' Arg(v(g1)v(g2)v(g192)™"),  fle,e) =0, g1,92 € G,

one can take the function
(2.) v(g) =detgi1,9€ G

As was proved in [8] (see also [2]), the corresponding Guichardet—Wigner
cocycle in bounded on G, and thus defines a pseudocharacter indeed.

2) G =850¢(2,q), g €N, ¢ # 2, and H = SO¢(2,q — 1). Let the group G
be realized as the set of real matrices of the form

g:<911 912)
921 922/’

where every g;; is a submatrix of order d; xd; , 4,7 =1,2,d; =2 and dy = g,
such that gJg' = J and det g = 1 (¢’ is the transpose of g), det g1; > 0, and

_ (L2 0\,
7=(¢ )
let H be realized as the subgroup of matrices g with gio = (9120), g21 =
(54 0), and gao — (%2 0), where (%" %2) ¢ H.

In this descriptiono, the Lie subgit)lgpr K corresponding to the maximal
compact Lie subalgebra £ of the Lie algebra g of G is realized as the set of
the above matrices with g12 = go1 = 0, g11 € SO(2), and go2 € SO(q) (where
SO(n) stands, as usual, for the group of orthogonal matrices of order ¢ with
determinant one). The space p can be identified with the set of matrices of
the form ( }g, ](?), where R stands for an arbitrary real (2 x ¢) matrix. For
the function v defining the cocycle by formula (1), one can take the function
given by the formula v(g) = %(all + age + ias — ia12), g11 = (Z; Z;z),
ai; € R, 4,5 =12

For the group H we consider the group G = SO¢(2,¢ — 1), ¢ € N, ¢ > 1,
in the form gi2 = (91, 0), go1 = (9(5)1), Go2 = (9(%2 2), where ¢’ = (Z; giz) €
800(2, q— 1).

3) G = Sp(n,R),n € N, and H = Sp(n — 1,R). Let the group G be
realized as the set of real matrices

g:<911 912)
921 go2/’
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where each g;; is a submatrix of order n x n, such that gJg¢' = J with

0o I,
7=(5, %)
In this description, the subgroup K is the set of the above matrices with
g12 = —921, 911 = 22, 911911 + 912912 = In, and g11915 — 912911 = 0.

The group K is isomorphic to the unitary group U(n) under the mapping
k <> ki1 +ikio, k € K, k11 +1ik12 € U(n). The space p can be identified with
the set of real matrices of the form (Q; _);fl
and X9 are symmetric. For the function defining the cocycle by the ordinary
formula (1) one can take the function v(g) = det 3(g11 + g22 + ig12 — ig21),
geaq.

The similarity transformation defined by the operator matrix

), where the real matrices X1,

1 < 1, I, )
S \il, I,
takes the group Sp(n,R) in the above form to a subgroup G’ of the group

SU(n,n) in such a way that the subgroup K is transformed to the subgroup
of matrices of the form

(g 1?*)’ u € U(n).

This means that the restriction of a nontrivial Guichardet—Wigner cocycle
on the group SU(n,n), see 1), to the subgroup G’ is nontrivial, and hence
defines a nontrivial Guichardet—Wigner cocycle on G’.
For the group H we consider the group G = SU(n — 1,n—1), n > 2, in
(10 . 0 0 (04, . o0
the form g1, = (/0 g 0)s 912 = (912 0)s 921 = (0981)7 and goa = (9(2)2 1),
where ¢’ = (%' 912) € SU(n, n).
921 922
4) SO*(2n), n > 1. Let the group be realized as the set of complex
matrices of the form
g= <911 912>

g21 G922

where every g;; is a submatrix of order n x n, such that gJg* = J for the

7=(3, %)

same matrix
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and ¢’g = I5,. In this description, the subgroup K is the set of the above
matrices of the same form as in 3) (the real matrices with g1o = —go1,
911 = 922, 911911 T 912912 = In, and g11915 — 91291, = 0; the group K is again
isomorphic to the unitary group U(n) under the mapping k <> k11 +iki2, k €
K, k11 + ik12 € U(n). The space p can be identified with the set of matrices

of the form
( X1 X2 )
—Xis —Xn

, where X717 and X1, are purely imaginary and antisymmetric. The function
v defining the cocycle by formula (1) can be given by the relation v(g) =
det %(gn + go2 +ig12 — ig21), g € G. As in 3), the similarity transformation
defined by the operator matrix

sl )

takes the group SO*(n)intheabove formtoasubgroupG” of SU(n,n) in such
a way that K is transformed to the subgroup of matrices of the form

(5 )
0 u* )

where u € U(n). This means that the restriction of a nontrivial Guichardet—
Wigner cocycle on SU(n,n) to the subgroup G’ is nontrivial, and hence
defines a nontrivial Guichardet—Wigner cocycle on G”.

For the group H we consider the group H = SO*(2(n — 1)), n > 2, in the
1 0 00 / /
form g11 = (Og11 0)7 gio = (912 0)7 go1 = (0 921), and goo = (922 0), where

, , 00 01
g = (9 92) € SO*(2(n — 1)).

’
921 Y922

Theorem. In cases1)——4), wheren > 1 in case 1), ¢ > 3 in case 2), n > 1
in case 3), and n > 1 in case 4), the restriction of the Guichardet—Wigner
cocycle on G to the subgroup H is nontrivial, and hence is a Guichardet—
Wigner cocycle on H.

Proof. 1t follows from formula (2) that the restriction of the function v from
G x G to H x H is a function satisfying the requirements of Theorem 1 and
the remark to this theorem in [8]. Thus, this restriction defines a Guichardet—
Wigner cocycle on H.
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Corollary. In cases 1) — —4), with the same conditions on the parameters
as in the theorem, the restriction of the Guichardet—Wigner pseudocharacter

on G to H is nontrivial, and thus is a Guichardet—Wigner pseudocharacter
on H.

Proof. The proof follows immediately from the relationship between the
Guichardet—Wigner cocycles and the Guichardet—Wigner pseudocharacters
(see [5-T7]).

§ 4. COMMENTS

For the proof of the boundedness of the Guichardet—Wigner cocycles,
see [2, 5, 9]. The restrictions of Guichardet—~Wigner pseudocharacters on
special Hermitian symmetric groups will be considered elsewhere.
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